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I INTRODUCTION

A preliminary system design for optical pattern recognition
of distant targets was presented in a previous report. The design was
for a field-scale system, and was based on certain concepts of target
signatures and recognition criteria that are associated with field-scale
properties. These signatures and recognition criteria are believed to
be realistic and reasonable, but they have not been tested directly
through actual observations and measurements.

Direct testing would require either field tests using an actual
system based on the design that has been presented, or laboratory tests
using a model system that is appropriately scaled in its optical per-
formance. The construction of a full-scale system and the carrying out
of field measurements would be expensive. It is the author's opinion
that the present status of and need for optical pattern recognition
techniques in tactical applications would not justify the expense.

Laboratory tests using a model system would be less expensive, and
the cost could probably be justified at this stage of tactical applica-
tion of optical pattern recognition. Also, a model system can be modi~
fied with relative ease to sharpen recognition criteria and lead to
improved design concepts for field-scale systems. Thus, a laboratory
experiment with an appropriate model system is the logical step follow~
ing the design exercise for the field-scale system.

For optical diffraction, there is a simple and well-known scaling
law that depends only upon the ratio of the two different wavelengths
used in the two different diffraction experiments. This law is appli-
cable to any optical pattern recognition system. Unfortunately, it is
of no practical value for the present case because realistic wavelength
ratios are only approximately 0.l; and a 0.1 scale having a 10-km range
would be 1 km, which would still require a field system and field tests.

The development of a laboratory system that correctly models the
optical performance of the field-scale system therefore requires a more
general optical scaling law. Such a law has not previously been
developed. Consequently, the author has developed a law. This report
presents, in detail, the derivation of the new scaling law and the scal-
ing or modeling equations that are suitable for the preliminary tactical
system design.

. BACKGROUND

Two diffraction experiments using the wavelengths A and hl

are considered where one experiment is required to be a "scale model"
of the other. For simplicity, the objects are assumed to be trans-
parencies illuminated by plane waves, and only diffraction by free

e —— -
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space are considered, The experiments are analyzed using the Fresnel-
Kirchhoff integral. These systems are illustrated in Figure 1.

Xo 3

T o A

/ N
Yo n
(a) ORIGINAL EXPERIMENT
xo £
R

T1 r —

"o nq

(b) SCALE MODEL EXPERIMENT

Figure 1., Diffraction experiments.

In the original experiment, the amplitude in the receiving plane
is given by

Aoi

1/2
ik[(x0-§)2+(y0- " 2+r2]
e

x -
1/2 ’
[(xo - 0%+ (yp - ?+ r2]




where

o 2n
E -

For purposes of scaling, one follows the convenient and usual practice
of introducing dimensionless variables:

u, = kx0 , V. = ky

Q
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=
ure
-
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=
=5

Then,

Al u v

-2 ENa B ol

UCEy 'U(k , k)‘ T ][T(k g k)
1/2

i[?uo-;)2+(v0-1)2¥?2]
e

du.dv .
T

2 2
Buo -2 + (v0 -1) +r
If one also writes

3 = g X
v(\ ’ T) U(k ’ k)

and
u v
=(=2 -0
J(uo > VO) e T(k ’ k) ’

the completely nondimensionalized equation for the amplitude in the
receiving plane is

Aoi
v(*‘ ’ T) = -W J(uo ’ Vo)
1/2
2-2]

i[(uo-o ) 2+(v0-ﬂt) +r
e

X

2]1/2 duodvo .

[(u0 - 0) + (v0 - 1)2 + T




For the model system, the amplitude in the receiving plane is

A
Up(6y 2 mp) = - 7\'1'][11(’(0"{0)

, 2
elkl [(xo-gl) +(Ygmny) R

[, - e+ (0 = p” : |

Introducing the nondimensionalizing substitutions

2]1/2

X

1/2 K

I k.X, , V, = k,Y R = k,R

0™ 5%« Y9~ Hig» R
o = k& a1y 2k

g T

1 %3
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J1(\"0 ’ vo)

"
h:a
Y
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o

one finds that
Ali 2
Vi s 1) =50 ) T1@ s Vo)

X . : ; 172 dﬁodvo .
[(uo & 01) + (Vo = TL) +R]

It is seen that the two nondimensionalized amplitudes of the
diffraction patterns are equal,

Vl(o ’ T) - V(O ’ T) ’




provided that

3’1(u0 - Vo) =T, Vo) )

because the integrands are identical., The first relation means that the
amplitudes of the two incident waves must be equal. The second relation
may be written as

or

&

1

R = 7:

r s

so that the distance scales as the wavelength ratio. The last relation
can be written as

This implies the spatial correspondence

SRR L T Y L
B ke * R % "0 & 0 ’

so that the pattern T
kl/k.

1 is similar to that of T but scaled by the ratio

Finally, the equality of the nondimensionalized diffraction ampli-
tudes implies that

k k
U o =U(§’7]) 5
l(rk1 kl )

so that the model diffraction pattern is scaled from the original by
Ny /N,
1

Another way to view this scaling is that all dimensions in the
model system are the same number of wavelengths hl as the corresponding

dimensions in the original system in terms of A It is intuitively

lu




satisfying that optical systems should satisfy such a scaling law, but,
as indicated earlier, this is not helpful in arriving at a scale model
for the field-scale optical pattern recognition system; another scaling
law is needed. 1In particular, it might be helpful if the scaling law
allowed one to choose the ratio of the sizes of the real diffraction
patterns. That case will be examined next.

(. GENERAL SCALING EXAMPLE
For this example, let @& be the scaling factor between the real
diffraction patterns of the two systems illustrated in Figure 1; i.e.,
the pattern amplitudes are related by
U, (@€, am) = UCEm)
and the spatial correspondence is

(51 s 7]1) = (@t , Qn) .

I1f @ > 1, the pattern in the model system is larger than that in the
original system; and if @ < 1, the pattern in the model system is smaller
than that in the original system.

In terms of the dimensionless variables used in the preceding
section, the specified scaling equation can be written as

Qo a)_ y4fe z)-
Ul(k p k) U(F ’k) Vile 5 T) »

But,
° 1)
U as  o1) _ U (akl k) (&kl k/| _ v Ok1 g Ok1 :
I\k ’ k 1 x Pk 1\ k o :
1 1
Introducing
e
k ’

one can write the scaling equation as

VI(BO ’ B’T) L V(J ’ T) .




From the preceding section it can be seen that

A
ViBo , Br) = -5 ff T,@, 5 V)

1/2
i [@g80 2 (op-8m 2452
e

| au
5 9
[EO S R AR S RZ]

X

dv .
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Making the obvious substitution

. =8 v. =R
N .uo,v0 ,vo

allows one to write

i

Aip
V. (B .~)=-1 HJ‘(BU 8v.)
Rt 25 g FRg

2 2 =
i[: (ug=c) +132(v0-1)2+R2]
e
“T 2 3 2 2 _2]t/? S
B8 (uo- o))" + B (vo- 7)" + R

1/2

which is to be compared with the expression for V(c, 7). From this
comparison it must be concluded that for arbitrary B and for arbitrary
but physically reasonable functions J and Jl’

Vi(Ba s Br) 2 V(e , 1)

i.e., the desired scaling equation is not satisfied.

However, it should be noted that the expressions for V1 and V are

based on the general form of the Fresnel-Kirchhoff integral which applies
to a broader class of situations than are normally encountered in optical
systems. Therefore, it is reasonable to consider the question of whether
the proposed scaling equation can be satisfied for a certain class of
optical systems. This question is approached by making certain standard
approximations in the Fresnel-Kirchhoff integral.

First, it is observed that in most optical systems the exponential
turn in the integrand, for example,

1/2
[ T O L
e




oscillates over a complete cycle for a one-wavelength change in the
distance,

; 1/2
s = [(xO S S N s rz] :

Thus, for even a relatively large change in S, the effect of S in the
denominator is practically constant so that it can be replaced by its
approximate value r and removed from the integral.

Second, the finite aperture of any real optical system will limit
the range of variation of S. This means that S can be replaced in the
exponent by an approximation that takes into account the aperture size.
Expanding the square root,

2
d - 0 e [<x0 - 9%+, - 1‘,)2] 4

2r2 8r4

(7]
[

rs l +

2 2
(xo - g) & (YO - '])
2r ?

E +

Il

provided that

k_[_(fo -0+ (vg - n)z]z

8r3

<L 2x
over the range of variation of the variables. The largest angle that a
light ray can make with the optical axis is given by

(x0 - £) max
r

tan 6_ =
X

or

(yg = n) max
tan 6 = ————— ]
y T

If one takes tan ex = tan Oy, the preceding inequality becomes

tan49 << %}

or

1/4
tan 6 << (2—:') .
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For A = 10.6 um and r = 10 km, the righthand side is 6.8 X 10-3, so that

5 << 23,78 minutes. For N = 0.6328 um and r = 1 m,the righthand side is
3.4 X 1072, so that § << 1.92 degrees.

It has been found from experience that the preceding inequality is
more stringent than necessary for most practical calculations. The
point is that the target size and aperture size must be small enough,
relative to the range, so that all light rays make small angles with the
optical axis. Because of this condition, this approximation for S, in
which nothing beyond the quadratic terms in the variables is retained,
is called the '"paraxial approximation."

Upon applying these two approximations, it is found that

. o B 202
Vifg 5 7)) = T e e]‘/‘fz?(J 1)
AV e
i/2% (u+v ) i/T(u.o+v.T)
<f | T(u v,) e L B R
o ’ O 0 0 ’
and that
ALd Al ) %
V. (Fo ity = __L eiR eiE? /2R(c "+t ")
e 27R '
182 /2R (ul+v? -iBZ/ﬁ(u o+v, 1)
5 7, Bv,) e o e S du dv
sy v By 0V -

It is now apparent that the scaling equation is satisfied for a broad
class of functions J(uo, vo) and for B arbitrary provided that

2
Q =
e
— (= = T e
R T
2.1
X =
TI(LUO ; Bvo) = J'(u0 3 vo) :

It is seen that for B
obtained.

1, the previous wavelength scaling law is

For arbitrary 8, the second of the preceding equations is equivalent
to

11
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The last relation can be written as

k K 5
TI(Bkl Xy Bk1 yo) = T(xy » ¥p)

or
and the first relation may be written as

. 2
1 i(1-B“) kr
A1 = AO e .

Because r, k, and B are fixed numbers, the exponential factor simply
represents a fixed-phase relation between the two incident beams. It
may be noted that this phase relation will not affect the intensity of
the model diffraction pattern.

This example shows that the new scaling relation,

U @&, an = UG,

between a pair of optical systems involving free-space diffraction can
be valid as long as the systems satisfy the paraxial approximation.
The implication of this result is that by limiting consideration to
paraxial systems, an entirely new set of optical-scaling relations can
be found.

Before considering these new relations, it is useful to comment
further on the present example. For @ =1 (i.e., the two diffraction
patterns are the same size), one finds that the two objects must be
identical; and because B = K/kl in this case, the distances are related
by

R = X r .

5

The distance is inversely proportional to the wavelength; whereas, in
wavelength scaling, the distance is directly proportional to the
wavelength.

The present example also allows scaling of systems with no wave-
length change. Taking A, = A\, it is seen that f = ¢ and that

1
R = Gzr .

12




For example, for & = 2, the pattern in the model system will be twice
the size of the original pattern and the transmission function in the
model system will be twice the size of the original function; however,
the distance in the model system must be four times the distance in the
original system,

The scaling relations that have been derived in this example are
valid for a broad class of transmission functions J(uo, VO). In fact,

no restrictions outside the paraxial approximation have been placed on
J. Because of this generality, this kind of scaling will be defined as
"ordinary scaling."

It is important to note, however, that ordinary scaling does not
include all possible cases of optical modeling. There can be special

transmission functions or special optical systems for which other
scaling relations exist. As an example, suppose that

T(xg 5 ¥g) = 8(xx0(yy)
and that

TI(XO " YO) = S(XO)S(YO) 5
Then,

T(uy » vp) = K 5 (ug)8(v,)

and
B -2
J’l(BuO ’ BVO) =<k1) 5(U0)5(Vo) ’
so that
Jl(BuO 4 Bvo) # ZT(u0 ; vo) .

Nevertheless, direct evaluation of the two integrals shows that

VI(BC’ ’ BT) = V(C‘ ’ T) ’

provided that

2 2
Aty iE_ A o
-R e b = e ,
and
Eolk
R 5 AR

13
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This kind of modeling (i.e., dependent upon special properties of the
objects or of the optical systems) will be called "exceptional scaling"
or "singular scaling." Although singular scaling may be of practical
importance in certain instances, it is not sufficiently general for the
purposes of the optical pattern recognition work. This report, therefore,
is concerned primarily with ordinary scaling.

Iv. DEFINITIONS AND RULES OF ORDINARY SCALING

Ordinary scaling applies to optical systems for which the
paraxial approximation is valid and in which the light is totally
coherent. Ordinary scaling is independent of special structural proper-
ties of the object and of special characteristics of the optical system,
such as the formation of an image or a Fraunhofer diffraction pattern in
the output plane. Ordinary scaling requires a geometrical similarity,
at the output planes, between the total diffraction effects of the two
optical systems, the original system, and the model system.

Because ordinary scaling is based on diffraction phenomena, it is
applicable to any optical pattern recognition system, optical data pro-
cessing system, or imaging system using coherent light. It should also
be applicable to holography, although no attempt has been made to
examine this question.

The principles of ordinary optical scaling are sufficiently general
that they can be applied to systems containing any kind of optical ele-
ment including electrooptic or acoustooptic devices and nonlinear ele-
ments, as well as ordinary passive elements. These principles are also
expected to be applicable to propagation through turbulent media and
through scattering media. However, general investigations have not been
undertaken. It is sufficient for present purposes to consider optical
systems consisting only of spherical lenses and apertures.

The primary scaling relation is the geometrical similarity between
diffraction patterns. Denoting the model system by a subscript, on the
functions as before, this similarity can be expressed as

Bk Bk \.
I. Ul(kl E kl q) = U , 1) .

The functions U, U, are complex amplitudes, and this relation says that

1
the amplitudes are geometrically similar in all respects, including the
phase. The phase can be important in some applications, holography
being an example, but in the final output plane of most systems the
phase is unimportant because the intensity, or absolute square of the
amplitude, is measured. For these systems, condition I can be replaced by

Bk -, -
II. Ul(klg,kl n> RUE ; » 5
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where K is an arbitrary phase function involving the output coordinates
(¢, 7)) as well as geometrical constants of the primary optical system.
Condition I1 is less restrictive than condition I. Condition II has the
particular virtue that it removes any requirement to control the phase
of the input light beam on the model system.* Because it is a pure
phase function, K satisfies the relation

In terms of the nondimensionalized amplitudes, the two preceding
conditions are

T v, (o, Br) = V(o , 1)
and

. vl(BO , Bt) = KV( , 1) .

In the remainder of this work, only conditions II and II' will be used.

One more remark may be made regarding the basic scaling relations.
As written, the relations require that the two systems have the same
power. This requirement can be convenient for testing detectors on a
model, and it will be carried through the calculations. The equal power
requirement does not affect the other parameters of the model. If power

: ; ; : 2 :
is not a consideration, one can simply let |K| be any convenient
constant.

The equations for the ordinary scaling of one optical system from
another can be developed in a straightforward fashion by following the
type of procedure that was used with the example in the second section.
This procedure is formalized in the following seven rules:

Rule 1 — The total diffraction effect of each of the optical systems
is written as a multiple integral by successive application of the
Fresnel-Kirchhoff diffraction integral.

Rule 2 — The paraxial approximation is applied.

*For systems in which the intensity is measured in the output plane,
the scaling relation could be taken as

2
Bk , Bk ’ 2

15




Rule 3 ~ No special properties of the optical system or the object
are to be introduced into the integrals, and no integrations are to be
carried out, no matter how simple.

Rule 4 ~ The integrals are nondimensionalized.

Rule 5 = Scaling factors are introduced into the integral for the
model system, There will be one scaling factor for each internal plane
or independent coordinate, and one scaling factor for the output plane.

Rule 6 — Factors independent of the variables of integration are
moved outside each multiple integral and lumped together as a phase~
amplitude coefficient.

Rule 7 — The scaling condition II' is satisfied by requiring
equality of corresponding independent factors in the integrands for the
two systems.,

Rule 3 helps to guarantee that no singular properties of the object
or a particular optical system, e.g,, one having an image plane in the
output plane, are introduced into the scaling equations. The prohibition
against carrying out any integrations guarantees that the maximum number
of scaling factors remain in the scaling equations. The fact that a
particular kind of optical element (lens or prism, for example) is used
at a given location must be introduced into the multiple integral for
the diffraction effects; however, numerical values and special geometri-
cal relationships should be excluded.

These rules generate scaling equations for classes of optical
systems; i.e., a set of equations for one-lens systems, a set for two-
lens systems, etc. Numerical values and special relations for a partic-
ular system in a class can then be substituted into the appropriate
equations,

It is convenient for present purposes to treat the illuminating
light beam in a specialized way independent of Rule 3. This avoids some
complexities and specializes the results to systems similar to the sug-
gested design of the tactical optical pattern recognition system, A dis-
cussion of the illuminating beam will be presented in the next section.
Then, the preceding seven rules will be applied, in succession, to
systems with increasing numbers of elements. The discussion will end
with a set of equations that are appropriate for the tactical optical
pattern recognition system.

V. TARGET ILLUMINATION

The first two examples in this report were based on plane-wave
illumination of the target. This was chosen to illustrate the two
scaling principles in the simplest manner. Any tactical optical pattern

16




recognition system using a laser source must use a diverging spherical
wave to illuminate the target. The target illumination and diffraction
to the first optical surface is illustrated in Figure 2. For computa-
tional purposes, the targets are represented as transparencies with the

light sources behind them. Reflection and transmission are entirely
equivalent optically.

X0 Xq

Pt
i o 4 o

Y1

(a) ORIGINAL SYSTEM

Xo

R e
015 T

Yo

(b) MODEL SYSTEM

Figure 2. Target illumination and diffraction
to first optical surface.

In the original system, the contribution from the spherical wave
illumination is

[ 2 2 2]1/2
ik|x +y +r ikr 2 2
L gi ik/2ro<xo+yo)

= e ’
9 & 2 2 1/2 r,
0" Yo" %o




where the paraxial approximation has been used. A similar expression is
true for the model system. The propagation factor from the object to
the X1, Y, plane is

[ 2 2 9 1/2
ik(x-X)+(y-y)+r] ] 2 2
. %0 170 _ ik e1 k/2r x1+yl) Lk/Zr( 0-+y0)
X, = X )2 +y, -y )2 + r2 i i
R

-1k/r(x XYY, )
X e >

where, again, the paraxial approximation has been used. From these

results, it is seen that for a point source in the original system the
free-space diffraction to the first optical surface is given by

5 g 2
Ai 1k(r0+r) e1k/2r( +y1)

(6] Sl
4 (xl 2 yl) T " r ©
0

: 2 2
ik/2(1/x +l/r)(x +y )

XJIT(x y.) e e &

0’70
-ik/r(x.x.+y.y.)
X e HoRla dxody0 .

Similarly, for the model system

5 5 b s
U(l)(x a8 B A11 elkl(R0+R) elk /2R X1+Y1)
1 1 i KIROR ‘

ik /2(L/R +1/R)(X Y )
X TI(X1 3 Yl) e

=ik /R X YY)

X e dXOdYO

These are the starting expressions for the subsequent development
of scaling equations.

VL. SCALING EQUATIONS FOR A ONE-LENS SYSTEM

The two systems are illustrated in Figure 3. The lenses are
designated by £ and L, respectively, and have focal lengths f and F as

18
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() MODEL SYSTEM

Figur

e 3. One-lens system,

0]

indicated. The lenses are thin spherical lenses with circular apertures.
The apertures are represented by the transmission functions

1/2
!xi + yf
D(x1 s y1 ; p) = rect

and

Dl(X1 - Yl ; p) = rect

2p

1/2
2 2)
(xl * 54

291
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where

1 for w = p
W .
rect(7)= . )
e 0 for w> p

The lens transmission function, independent of the aperture, is a pure-
phase function that converts an incident plane wave into a converging
(for positive focal length) spherical wave, the spherical radius being
the focal length of the lens. Because of the aperture, the paraxial
approximation can be used; therefore, the phase functions are

1/2
" 2 X .2 : o2
-1k[x1+yl+f ] T -1k/2f<x1+y1>
e =t & e

and

1/2
E 2.2 7 : . Do
e-lkl[%1+Y1+F ] 1 e-xle 5 1k1/2F(X1+Y1)

The total transmission function of the lens, which is effective at the
lens plane, is the product of the aperture function with the phase
function.

The diffracted wave that is incident on the lens plane is first
affected (multiplied) by the apertured lens, then diffracted through
free space to the output plane. The propagation factor for this last
diffraction in the original system can be written in the paraxial
approximation as

1/2
ik [(g-xl) 2+('q-y1)2+ri] ikr
e e

1/2 sl
2 2
[(& - xl)z +(h-yp) + rl] a

-1k/l‘1(xlﬁ+ylv|)
X e s

2. 2 . &l
1 ik/Zrl(E *n ) exk/Zrl(f1+y1)

with a similar expression for the model system. Putting these results
together with the previous results on target illumination, it is found
that
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To nondimensionalize the diffraction equation for the original
system, the change of variables is introduced:

u = kxi » ¥y @ kyi

T =kr,, f = kf
1 &

o=kE, T = ky

and also the functions
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V(o , 1) =U(% ,T‘()=U(§,q)

Y Yo

J(uo, vo) = T(T: s T:) = T(XO ’yO)

Ly
D<“1"’1;kp)=D<T ,—k—;o)=D(x1,y1;p)

Then, one can write

. LEGFEE) o 2%y
> (-i) A e 3 1
27N\ 0 ro'fr1

2 200
xffj(“o i vo) e1/2(1/‘fo+1/?) (u0+v0)

X I(uo, Vg5 O s T) duodv0 .

where

I(uo,vo;O’T) =[fD(U1,V1;kp)

= (2,2
i/2(1/r+1/x -1/1) (u +v )
P 1 11

-ilul(uO/F+°/¥i)+v1(VO/F+T/f1)J
X e cluldv1 c

It is convenient, for the application of the last rule,to separate the
multiple integral in this fashion.

For the model system, the first change of variables is

u

]
-
>
<l
]
=
<
|

i i

R, = kR, ,F = kF

s el B e R
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This change is accompanied by the functional substitutions
a )
snl=% <k}
VI(OI,TI) = Ul(k ’ ) Ul(gl’nl)

B Yo
71 @55 V) = T1<k_ s k_)= T Ko s ¥p)

1 1
ﬁl Vl
D, (@, V5 ko) = D1<k—1 , -lq ; 91) =D Xy Y50
so that one obtains
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X e
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S 1Y0 TS50 0 1™ mav, .

At this stage, the scaling factors are introduced through the change of
variables

GO = Qu, SV

0 0
b B B0 B 5
nl=ﬁ ,11=BT .
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This gives
s 15 +_ o _— el
1 (R +R+R,-F) iﬁz/ZRl(Uz*_I 2)
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Applying Rule 7, first set I1 = I, then apply the rule directly to

the two integrands. These first steps yield the following relations:

A ——

o7 R S 1 O S |
7<R+E1 F) ('f+'f1 ?)

D1(7u1 WAL k1°1) =D(u;, V5 kp) .

Next, Rule 7 is applied to the remaining factors in the integrals for

V and Vl. This gives the relations

1 1 1 1)
als +e=ls =+ =

Jlﬁluo ,avo) = J’(u0 ,vo) »
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Finally, using the parameter K to remove the pure phase factors, Rule 7
applied to the coefficients of the integrals gives

22
8 N 1
)\.1 1 RoR R, N0 Tor'f

-

-

These seven equations, together with II', constitute the scaling equations,
but they are more conveniently expressed in terms of the physical coordi-
nates and functions., Collecting the distance relations, one finds that

)+ (o
0 13" *

2% N S |
R Kl o
Bx _ A 1
R1 Nl r1

2(1 1 1) A (1 1 1)
s+ ==-=)=—=[-+—= - = .
(R By~ B Ay RE "1y E

1f the scaling factors ¢, B, y are considered completely free variables,
the first three equations uniquely define the model distances RO’ R, Rl'

The fourth equation then uniquely defines F. A little algebraic manipu-
lation shows that the last equation can be written as

1. r[1 @-»1_@G-n1
F 72,\. (@4 r B rl =

1

The equation relating the aperture functions is also a single
distanc+ equation because of the special form of the aperture functions.

It is found that
( 2 2 b
U, 4+ v
1 1
rect
2 —
o

Dl(/ul, vy k1“1) =

and that

D(ul’ v kp) = rect

1;
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therefore, the aperture scaling equation is

o
Ql N 8]

The functional scaling relations are

BN BA
1 1
Ul( 7 € T|> =K U, "])

a)\.l a}\.l
A=t %o "R o) = TPgeTg) | o

that now, with a lens in the system, the scale
ad the diffraction pattern are not the same.

7|

It is important to note
factors on the object a

Finally, the relation between the amplitudes of the input illumi-

nating beams is

M

i r
Ay =R OB A Tor < (@ - Dxg)

It is this instructive to consider some examples, First, suppose
is desired to have the two diffraction patterns the same size,
that it is desired to reduce the target in the model by a factor

of 100, and third, that for reasons of symmetry

%o _ Do
TR

1t can be shown that this equation implies that

FEm G

The first two conditions previously given are equivalent to
BN

— =1

1
N

and

Q
s
—
]
N

26




Using these relations in the first three distance equations, one obtains

< 16"% A
RO = 10 N ro
1
R = 10'4>\Lr
1
- 0t X
R1 = 10 hl r1 .

The equation for the model focal length becomes

A
=Ly0%i. 1-10%HL1
== 10 [f (1-10 )rl] :

=

To further specialize the system, suppose that

r1 = f -
so that
e A I
F =10 Kl f =10 Xl r1 = R1 .

The aperture in the model system is given by

and the input beam amplitude by

B
Al = 10 \1 AO .

Suppose that the wavelength is not changed (kl = N), that the
original system consists of a 6-m target 10 km away, that ro =r,
f=1m, and o, = 12,5 cm. The model system would then consist of a
6-cm target 1 m away, with R0 =R=1m F=1cm, and Py = 1.25 mm,
The distance R1 would be 1 cm.

The point of this example is to show directly that this new system
of optical scaling can, in fact, be used to reduce a field-scale system




to a manageable laboratory size. It is important to note that all
quantities do not scale in the same way. This is a consequence not only
of the fact that there are three scale factors, but also of the fact
that they enter the distance relations in different nonlinear ways.

As another example, an interesting special situation occurs with

the scaling parameters y = Q, Bkl/k = 1, QKI/K = 10-2 if,in the original
system,

r, = 0.99 £. .

Then, the equation for the focal length in the model system gives

=0 5

=

which implies an infinitely long focal length, or no lens at all. Thus,
a "particular'" system involving a lens and aperture can be modeled to
yield the same diffraction pattern with an aperture only. This is a
result in ordinary scaling particularized to a very special system. The
correctness of the result can be verified directly by substituting the
model system parameters into the expression for Ul(sl, ql), and the

value of f = r1/0.99 into the expression for U(glq). The author knows

of no other simple and direct way to find this model.

A more general result related to this example can be stated. For
RO/R = ro/r, Bkl/h= 1, and any r, < f a scaling factor & can be found

with(IKI/K < 1, such that F = 0. That is, any single-lens system with

the receiving plane inside the focal plane of the lens can be modeled
by a lensless system containing an aperture and yielding a diffraction
pattern identical to that from the original system. This result is
physically reasonable because in either system a Fresnel diffraction
pattern is obtained, and it is just a matter of locating corresponding
positions along the optical axis. But, again, there is no other simple
way of locating these positions.

These examples illustrate the power and versatility of this new
system of optical scaling.

VIl.  SCALING EQUATIONS FOR A TWO-LENS SYSTEM

The two systems are illustrated in Figure 4. The lenses are
again designated by ﬂi and £i and have focal lengths f, and F,, The

i R
aperture transmission functions are denoted by D(i)(xi, ¥ .(l)) for
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(a) ORIGINAL SYSTEM
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(b) MODEL SYSTEM

Figure 4, Two-lens system,

the original system and by Dil)(xi, Yi; 0{1{> for the model system. It

will be assumed later that these are rect-functions, as before. The
phase functions for the lenses have the same mathematical structure as
before.

The physical change in going from a one-lens to a two-lens system
can be thought of as putting the output of the one-lens system into the

lens at the x,, yz-plane (or the X2, Yz-plane),then allowing free-space

diffraction to the new output plane. The transition for the mathematical
expressions follows this prescription exactly, with the added proviso
that each diffraction integral has a factor (-i/A) associated with it.

Thus, using the one-lens expressions, changing (¢, ) to (xz, y2)

(and correspondingly for the model system) and introducing the effect
of the second lens and the final distance, it is easy to find that
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For the original system, the following transformations are made:
b B B Al
T, = kr, ,'fi = kf,
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V(o , 1) = U(2 ,T;>= UCE )

uo v

T(uy, vy = T(T . -EQ> = T(x;, Yo

D(i)<ui ’ Vi 5 D(l)) = D(i)<xi ’ yi 5 D(l)) .

The corresponding transformations for the model system are
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Using these,one finds that
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where
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The scaling factors are now introduced through the equations
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From the equality of J and Jl‘ Rule 7 gives

Bh e E ;
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and the application to the remainder of the integrand gives

Hd v L)a (L1
Ry K T, T
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Finally, the external amplitude terms give
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The scaling equations for distances in the two systems are

:
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Taking the lens apertures to be rect-functions, one finds the aperture
scaling functions to be

N
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The functional scaling relations are the same as before:
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The amplitude scaling relation is again
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The general properties of these scaling equations are obviously
similar to those for the one-lens system; therefore, no examples are
needed.

VIill. GENERALIZATION TO AN n-LENS SYSTEM

There is a pattern to the scaling equations which allows one
to generalize from this point to a system containing any number of
lenses. This general result can be proved by induction starting with
the diffraction integrals, but there would be very little virtue and a
great deal of tedium in this.

An examination of the previous scaling equations shows that the
scaling factors @& and { occupy special positions in the hierarchy of
scaling factors. This reflects their special relations to the input
(target) and output (diffraction pattern) signals. The other scaling
factors are '"internal" to the system, each one being associated with a
physical plane containing an aperture and a lens. For notational
convenience, these internal scaling factors will be relabeled.

Let Yi-1 be associated with lens ’Ci' Let 7 be the scaling factor

for the target and 3 be the scaling factor for the diffraction pattern.
Then, the scaling equations for distances in an n-lens system are:

1 .1 A [1 1)
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| 71-1(&1 5 + R " F >= (r + -3 f.) y - 2 ey M .
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The aperture scaling relations are

(1) L Y L 1) . (1) g
D1 (yi_lui ’7i-lvi’ 1 =D (ui, V.50 ) s | T eiae B 3

and if all the apertures are rect-functions, the aperture radii scale
according to

@) _ it @)
pl - X o)

Finally, the functional equations and the amplitude equation are
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IX. TREATMENT OF A SPATIAL FILTER

A spatial filter is a common element in many coherent optical
systems. The suggested design for the tactical optical pattern recogni-
tion system requires a spatial filter. It is quite simple to include
spatial filters in the new optical scaling system, as will be seen.

A spatial filter is a physical object with specially chosen trans-
mission properties. Mathematically, a spatial filter is represented by
its transmission function. Because any real spatial filter has a finite
aperture, it would be appropriate to call it an aperture (or aperture
transmission) function, and to represent it by the symbol D (but not
necessarily meaning a rect-function), This will be done. A spatial
filter in the original system at plane m will be represented by
D(m)(xm, ym) or by Dsm)(xm, ym) if it is particularly important to

distinguish it as a spatial filter.

The generality of the scaling equations will be increased if each
spatial filter is treated as being associated with a lens, even though
spatial filters often stand alone. Such a treatment allows for the
possibility that a lens be used at the spatial filter in the model system,
even if there is no lens at the spatial filter in the original system.

37




Using this approach, the inclusion of spatial filters in the

formalism introduces no changes in the previously derived general scaling

: s . : ; : th
equations. Specifically, if the spatial filter is at the m lens plane,
the contribution of this element to the scaling equations is of the form

‘w2 w1l A _1
Rm-l 1 m-1

3 Bk i e L e i T
’ell®. . TR e e T
m~1 m m 1 m-1 m m

Yoy ™ Fory &
D(m)( .4 i , m ! ym> 3 Dém)(xm’ w0

1S N m

for an internal plane. The modifications required if the spatial filter
is in either the first or the last lens plane are apparent from the

general equations.

The distinguishing features of the spatial filter enter the calcu-
lations only when explicitly evaluating the preceding aperture-scaling
equation. The general result is that in the model system the spatial
filter transmission function is magnified by the factor

relative to the spatial filter in the original system. As an example,
consider a spatial filter consisting of a central opaque spot of radius
The spatial filter also has a finite total aperture, and is taken

<)
]
to be a circle of radius P > Pg concentric with the spot. Then
p , 2YE g g
(m) *n * Ym o t ¥
Biadi(x 5 v )i = rectl=———————a—| = By ac tllaem—e e %
s m 2p 2p
m s
Thus, I 5
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rec I s
1 - d
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so that the scaling equation gives

- m=ESS T
Flm A Pm
M, 7m-1 Kl
P1s N\ B+ 7o

It is also instructive to examine spatial filter scaling in the
case for which neither system has a lens at the spatial filter. One
must then set fm = Fm = » and consider all equations that involve only

the distances r y . R , and R . These equations are now
m=-1 m m=-1 m

'm-2 "m=1 _ A _1

Rp-1 » Tael
2 1 1 A 1 1
Y = + =
m: 1(Rm-1 Rm> '\'1<rm-l rm)
/m-l 7m 4 e

R N, T 8

m 1 m

Now, if the first and last equations are subtracted from the middle
equation, the result is

This can be written as

‘m 7m-2

r " r oy i
m m=1

This indicates that if the scaling factors 7m’ Y are considered to be

m=2

at one's disposal, then 7 is determined once the others are chosen.

m-1
This is physically reasonable because it would be surprising if the
scale on a spatial filter could be chosen completely independent of the
scale of the rest of the optical system,




The intuitive choice (for no lenses at the spatial filters) is

which means that lenses m - 1, m + 1, and the spatial filter all scale
from the original system by the same factor. This, however, is not the
only scaling solution. Another scaling solution is given by

-1
7i—1 T _L.+ r . t i t 5
rm m-1 "m m 7m-2 m=1

This reduces to the intuitive solution only for the choice Y

) .
m=2
This example shows, again, the considerable modeling flexibility avail-
able with this new system.

X. MODF LING THE TACTICAL OPTICAL PATTERN RECOGNITION
SYSTEM

The suggested design for the tactical optical pattern recogni-
tion system required four elements: two lenses followed by a spatial
filter, which is, in turn, followed by the third lens. The system is
shown in Figure 5. There is no lens at the spatial filter, so one must
take f4 = o, The spatial filter consists of a central obscuring spot,

whose radius will be denoted by Pg* All the lenses have circular
apertures.

] ..

x1 Xz "4
r A\ '1jl\ 2 3 f{\
Yq Y2 Y3 Yq n

Yo

Sre

=3

Figure 5. The tactical optical pattern recognition system.




The distance scaling equations are:
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The aperture scaling equations are:
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The functional and amplitude scaling equations are:
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It is apparent that there is considerable design freedom (six
scaling factors) available in specifying a laboratory model of the
field-scale system, The determination of some particular models from
these equations will be left for a subsequent report.

Xt DISCUSSION

The basic principles of a new system of optical scaling and
modeling have been presented. These principles apply to any optical
situation in which the illumination is totally coherent and tor which
the paraxial approximation is valid, The primary scaling rclation is o
geometrical similarity between the output diffraction patterns of an
original optical system and its model. The optical scaling based on
these principles is called ordinary scaling.

The theory of ordinary scaling was developed in detail tor any
system consisting entirely of lenses and apertures and spatial filters.




In particular, the work in this report was directed toward the scaling
of optical pattern recognition systems that might be used tactically.
Because of this emphasis, a special kind of target illumination was
assumed in the derivations. This limitation is not serious, however,
and its removal is simple. Thus, the theory developed here is essen-
tially applicable to any optical pattern recognition or optical data
processing system at any wavelength.

By using an example of a single-lens system, it was shown that this
new theory of ordinary scaling makes it accurately possible to model
very large scale systems with modestly-sized laboratory systems. The
particular significance of this is that certain tactical parameters such
as target signatures can be determined without the large expense of field
tests using a field-scale system. The theory also allows a change in
wavelength in the model, which can be another cost-saving convenience;
it also allows a laboratory model using the field wavelength, obtaining
a field-size diffraction pattern, and having the same power throughout,
which means that field detectors and circuitry can be tested directly
in the laboratory. The final development was a set of scaling equations
applicable specifically to a previously specified tactical optical
pattern recognition system,

As indicated briefly in Section I, the basic principles of ordinary
scaling apply more broadly than the narrow development of this report
might indicate. They apply, in fact, to any of optical phenomenon for
which propagation effects can be expressed in a form like the Fresnel-
Kirchhoff diffraction integral. It is the author's opinion that this
includes the important phenomena of optical scattering by particle
distributions, optical scattering by turbulent fluctuations, and optical
path distortion by thermal effects.

It is the author's belief that the particular results presented in
this report, and other results which can be developed from the basic
principles of ordinary scaling are of considerable importance to Redstone
Arsenal in areas outside of optical pattern recognition. The basis for
the importance is money: ordinary scaling will allow laboratory measure-
ments of field performance, where the only previous option was actual
field measurement. It is the author's opinion that ordinary scaling can
be used to design field-accurate laboratory measurements associated with
the following problems:

a) Laser designation/guidance systems.
b) Smoke.

c) Turbulence.

d) Inciement weather,

e) Terrain/thermal effects.

f) Optical countermeasures.
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